In the "OpenSSL CA tutorial - a full-featured OpenSSL PKI" post we set-up a full featured Public Key Infrastructure with Root and Intermediate Certificate Authorities, Indirect CRL and OCSP Responders. To have a go with that PKI, we also generated an Extended Validation (EV) certificate ("/tmp/foo.crt").

In this post we are using the same PKI we set up in that post, the EV certificate we generated and we also generate a new Organization Validated (OV) certificate: the goal this time is showing how to deal with Indirect CRL generation, CRL validation and OCSP validation.

Read more >

OpenSSL is a full featured tool capable not only to generate keys and certificates, but also to provide every facility a PKI must have, such as indirect CRL and OCSP responders: these features, along with certificate's best practices such as the Certification Practice Statement (CPS), publishing CRL Distribution Points URL, OCSP Responders URL, CA Issuers URL, are the topics of the OpenSSL CA tutorial - A full-featured openssl PKI. 

Read more >

As we saw in our post on Symmetric And Asymmetric Cryptography, asymmetric key pairs can be used to encrypt and digitally sign documents, but have a huge shortcoming: since they are just keys, they don't provide the metadata necessary to enable people to securely identify their owner. As we saw in the post on GNU Pretty-Good Privacy, GPG addresses this shortcoming by wrapping the key into a container object (the GPG key) that also embeds some metadata about the owner of the key. Of course also the IETF addressed this problem, defining the standard for X.509 certificates (currently X.509v3). X509 Certificates Howto & Public Key Infrastructure Tutorial explores X.509 certificates and how they are trusted by the means of a Public Key Infrastructure.

Read more >

When it comes to guarantee data confidentiality on the wire or on the disk we cannot be exempt to know how to use cryptography: this post provides a quick guide of both symmetric and asymmetric cryptography along with an overview of their bricks: RSA and DSA keys, Elliptic Curves keys, PGP Keys, Message Digest, HMAC, digital signature and encipherment. The aim is to provide the necessary terms and concepts to understand how to operate with cryptographic tools, providing examples with openssl.

Read more >